Early-life Nutritional Programming of Metabolic Health through Epigenetic Pathways

ERA-HDHL JFA2 “Nutrition & the Epigenome” (Epigenome)
Early-life Nutritional Programming of Metabolic Health through Epigenetic Pathways
Janine Felix
Erasmus MC, University Medical Center Rotterdam
The Netherlands


Partner Organization Partner Country
University of BristolUnited Kingdom
Wageningen UniversityThe Netherlands
University of British ColumbiaCanada
Ludwig-Maximilians-Universität MünchenGermany
Barcelona Institute for Global Health (ISGlobal)Spain

1. Overall project description

1.1 Summary

Pregnancy and infancy are critical periods for nutritional programming of metabolic health. Epigenetic changes such as DNA methylation seem to have a crucial role linking early-life nutrition to metabolic health across the life course. The aim of NutriPROGRAM is to identify early-life nutrition-related factors and related epigenetic pathways leading to metabolic adaptations and disease across the life course.

So far, NutriPROGRAM partners have found associations of DNA methylation levels at over 900 sites in cord blood with birth weight and at almost 9000 sites with gestational age. Also, we have described DNA methylation trajectories from birth into adolescence and have created a publicly available website through which these can be visualized. In addition, a publicly available catalogue of blood autosomal cis-eQTMs in children was created. Both of these resources will help in designing and interpreting future DNA methylation studies.We have also extensively examined DNA methylation in relation to child and adolescent body mass index (BMI) and have found only minimal associations, which may indicate that DNA methylation differences are mostly a consequence rather than a cause of obesity, but this needs further study. Ongoing work focuses on further characterizing the associations of multiple nutritional exposures in pregnancy, infancy and childhood with child DNA methylation, as well as on associations of DNA methylation with cardiometabolic outcomes and a number of methodological projects. 

We expect that NutriPROGRAM will:

1) Create a set of harmonised and integrated nutrition-related factors that can be used by scientists studying the relationships between nutrition and health;

2) Lead to a better understanding of the role of DNA methylation in the pathways underlying the relation of early-life nutrition and metabolic health;

3) Lead to a better understanding of causality and modification of DNA methylation in these pathways. This will be a starting point for prevention of obesity, blood lipid disorders and type 2 diabetes;

4) Contribute to the development of methods to help identify the most promising findings from DNA methylation studies for further research;

5) Form a sustainable, international network of researchers on early-life nutrition, epigenetics and long-term metabolic outcomes that will lay the foundation for further research in this area for many years to come.

1.2 Highlights

Associations of DNA methylation with birth weight

Birthweight is associated with health outcomes across the life course. DNA methylation may be an underlying mechanism. In a large meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts, including three NutriPROGRAM partners, in collaboration with the Pregnancy And Childhood Epigenetics Consortium, we found that DNA methylation in neonatal blood is associated with birthweight at 914 sites. The difference in birthweight ranged from -183 to 178 grams per 10% increase in methylation. Birthweight-related DNA methylation sites partly overlapped with some DNA methylation sites that were previously reported to be related to maternal smoking and to maternal body mass index in pregnancy, but not with those related to folate levels in pregnancy. Whether these associations are causal or explained by other factors influencing DNA methylation requires further research.

Trajectories of DNA methylation from birth to adolescence

DNA methylation is known to play an important role in chid health and development, but not much is known about how DNA methylation changes with age in this important period of life. Using information from over 2300 children, we have characterized trajectories of DNA methylation from birth into adolescence. We found that DNA methylation changes with age at over half of the examined CpG sites and that there are differences between individuals in terms of patterns of change. These findings support a developmental role for DNA methylation and will be important for future studies in this area. We have created a publicly available website where the DNA methylation trajectories can be visualized: http://epidelta.mrcieu.ac.uk.

DNA methylation in relation to gene expression

For the biological interpretation of studies on DNA methylation, it is important to understand the associations of DNA methylation and gene expression. In over 800 children, we charcterized these associations. We found 63,831 cis-eQTMs, expression quantitative trait methylation, defined as correlations between gene expression and DNA methylation levels, representing 35,228 unique CpGs and 11,071 genes (transcript clusters). The overlap of child blood cis-eQTMs with those previously described in adults was small. Only half of the cis-eQTMs could be captured through annotation to the closest gene. This catalogue of blood autosomal cis-eQTMs in children can help the biological interpretation of EWAS findings. It is publicly available at: https://helixomics.isglobal.org/

DNA methylation and body mass index from birth to adolescence

DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using data from up to 4133 children from 23 studies. Overall, there were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across chidlhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adults BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity, but this needs further study.

Paternal body mass index and child DNA methylation

Previous small, mostly candidate gene studies have shown associations between paternal pre-pregnancy body mass index (BMI) and offspring-blood DNA methylation. In NutriPROGRAM and the Pregnancy and Childhood Epigenetics (PACE) consortium, we co-ordinated epigenome-wide association studies of paternal BMI in relation to DNA methylation and then meta-analysed the results across 13 data sets at birth (4894 babies) and six data sets in childhood (1982 babies). We found little evidence to support previous findings, even at imprinted regions. However, this does not rule out the possibility of a paternal epigenetic effect in different tissues, at regions not covered by the 450k array, via different mechanisms or in populations with greater extremes of paternal BMI. More research is warranted to help in understanding the size and nature of contributions of paternal adiposity to offspring epigenetics and health outcomes.

4. Impact

4.1 List of publications

AuthorsTitleYear, Issue, PPPartners NumberDoiPdf
Sharp GC*, Schellhas L, Richardson SS, Lawlor DATime to cut the cord: recognizing and addressing the imbalance of DOHaD research towards the study of maternal pregnancy exposures2019, 10(5), 509-51210.1017/S2040174419000072
Neumann A, Walton E, Alemany S, Cecil C, González JR, Demissie Jima D, Lahti J, Tuominen ST, Barker ED, Binder E, Caramaschi D, Carracedo A, Czamara D, Evandt J, Felix JF*, Fuemmeler BF, Gutzkow KB, Hoyo C, Julvez J, Kajantie E, Laivuori H, Maguire R, Maitre L, Murphy SK, Murcia M, Villa PM, Sharp GC*, Sunyer J, Raikkönen K, Bakermans-Kranenburg M, Van IJzendoorn M, Guxens M, Relton CL, Tiemeier HAssociation between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis2020, 10(1), 39810.1038/s41398-020-01058-z
Küpers LK*, Monnereau C, Sharp GC*, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M*, Perron P, Wright RO, Hertz-Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergström A, Örtqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Håberg SE, Sørensen TIA, Taylor JA, Räikkönen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hämäläinen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melén E, Prentice AM, Kajantie E, Almqvist C, Oken E, Dabelea D, Boezen HM, Melton PE, Wright RJ, Koppelman GH, Trevisi L, Hivert MF, Sunyer J, Munthe-Kaas MC, Murphy SK, Corpeleijn E, Wiemels J, Holland N, Herceg Z, Binder EB, Davey Smith G, Jaddoe VWV, Lie RT, Nystad W, London SJ, Lawlor DA, Relton CL, Snieder H, Felix JF*Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight2019, 10(1), 189310.1038/s41467-019-09671-3
Gervin K, Salas LA, Bakulski KM, van Zelm MC, Koestler DC, Wiencke JK, Duijts L, Moll HA, Kelsey KT, Kobor MS*, Lyle R, Christensen BC, Felix JF*, Jones MJSystematic Evaluation and Validation of Reference and Library Selection Methods for Deconvolution of Cord Blood DNA Methylation Data2019, 11(1), 12510.1186/s13148-019-0717-y
Marchioro L, Geraghty AA, Uhl O, Shokry E, O’Brien EC, Koletzko B*, McAuliffe FMEffect of a low glycaemic index diet during pregnancy on maternal and cord blood metabolomic profiles: results from the ROLO randomized controlled trial2019, 16, 5910.1186/s12986-019-0378-z
Geurtsen ML, Jaddoe VWV, Salas LA, Santos S, Felix JF*Newborn and childhood differential DNA methylation and liver fat in school-age children2019, 12(1), 310.1186/s13148-019-0799-6
Caramaschi D, Hatcher C, Mulder RH, Felix JF*, Cecil CAM, Relton CL, Walton EEpigenome-wide association study of seizures in childhood and adolescence2020, 12(1), 810.1186/s13148-019-0793-z
Sikdar S, Joehanes R, Joubert BR, Xu CJ, Vives-Usano M, Rezwan FI, Felix JF*, Ward JM, Guan W, Richmond RC, Brody JA, Küpers LK*, Baïz N, Håberg SE, Smith JA, Reese SE, Aslibekyan S, Hoyo C, Dhingra R, Markunas CA, Xu T, Reynolds LM, Just AC, Mandaviya PR, Ghantous A, Bennett BD, Wang T, The BIOS Consortium, Bakulski KM, Melen E, Zhao S, Jin J, Herceg Z, Meurs JV, Taylor JA, Baccarelli AA, Murphy SK, Liu Y, Munthe-Kaas MC, Deary IJ, Nystad W, Waldenberger M, Annesi-Maesano I, Conneely K, Jaddoe VW, Arnett D, Snieder H, Kardia SL, Relton CL, Ong KK, Ewart S, Moreno-Macias H, Romieu I, Sotoodehnia N, Fornage M, Motsinger-Reif A, Koppelman GH, Bustamante M,* Levy D, London SJComparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking2019, 11(13), 1487-150010.2217/epi-2019-0066
Rudloff S, Bührer C, Jochum F, Kauth T, Kersting M, Körner A, Koletzko B*, Mihatsch W, Prell C, Reinehr T, Zimmer KPVegetarian diets in childhood and adolescence: Position paper of the nutrition committee, German Society for Paediatric and Adolescent Medicine (DGKJ)2019, 6(1), 410.1186/s40348-019-0091-z
Reinehr T, Schnabel D, Wabitsch M, Bechtold-Dalla Pozza S, Bührer C, Heidtmann B, Jochum F, Kauth T, Körner A, Mihatsch W, Prell C, Rudloff S, Tittel B, Woelfle J, Zimmer KP, Koletzko B*Vitamin D supplementation after the second year of life: joint position of the Committee on Nutrition, German Society for Pediatric and Adolescent Medicine (DGKJ e.V.), and the German Society for Pediatric Endocrinology and Diabetology (DGKED e.V.)2019, 6(1), 310.1186/s40348-019-0090-0
Koletzko B*, Bührer C, Ensenauer R, Jochum F, Kalhoff H, Lawrenz B, Körner A, Mihatsch W, Rudloff S, Zimmer KPComplementary foods in baby food pouches: position statement from the Nutrition Commission of the German Society for Pediatrics and Adolescent Medicine (DGKJ, e.V.)2019, 6(1), 210.1186/s40348-019-0089-6
Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, Mari S, Quintela I, Mason D, Cadiou S, Casas M, Andrusaityte S, Bjerve Gutzkow K, Vafeiadi Ma, Wright J, Lepeule J, Grazuleviciene R, Chatzi L, Carracedo A, Estivill X, Marti E, Escaramis G, Vrijheid M, Gonzalez JR, Bustamante M*Identification of blood autosomal cis-expression quantitative trait methylation (cis-eQTMs) in children202010.1101/2020.11.05.368076
Mulder RH, Neumann A, Cecil CAM, Walton E, Houtepen LC, Simpkin AJ, Rijlaarsdam J, Heijmans BT, Gaunt TR, Felix JF*, Jaddoe VWV, Bakermans-Kranenburg MJ, Tiemeier H, Relton CL, van IJzendoorn MH, Suderman MEpigenome-wide change and variation in DNA methylation in childhood: Trajectories from birth to late adolescence2021, Jan 1510.1093/hmg/ddaa280
van Dongen J, Hagenbeek FA, Suderman M, Roetman PJ, Sugden K, Chiocchetti AG, Ismail K, Mulder RH, Hafferty JD, Adams MJ, Walker RM, Morris SW, Lahti J, Küpers LK, Escaramis G, Alemany S, Jan Bonder M, Meijer M, Ip HF, Jansen R, Baselmans BML, Parmar P, Lowry E, Streit F, Sirignano L, Send TS, Frank J, Jylhävä J, Wang Y, Mishra PP, Colins OF, Corcoran DL, Poulton R, Mill J, Hannon E, Arseneault L, Korhonen T, Vuoksimaa E, Felix JF*, Bakermans-Kranenburg MJ, Campbell A, Czamara D, Binder E, Corpeleijn E, Gonzalez JR, Grazuleviciene R, Gutzkow KB, Evandt J, Vafeiadi M, Klein M, van der Meer D, Ligthart L; BIOS Consortium, Kluft C, Davies GE, Hakulinen C, Keltikangas-Järvinen L, Franke B, Freitag CM, Konrad K, Hervas A, Fernández-Rivas A, Vetro A, Raitakari O, Lehtimäki T, Vermeiren R, Strandberg T, Räikkönen K, Snieder H, Witt SH, Deuschle M, Pedersen NL, Hägg S, Sunyer J, Franke L, Kaprio J, Ollikainen M, Moffitt TE, Tiemeier H, van IJzendoorn MH, Relton C, Vrijheid M, Sebert S, Jarvelin MR, Caspi A, Evans KL, McIntosh AM, Bartels M, Boomsma DIDNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan2021, Jan 810.1038/s41380-020-00987-x
Sammallahti S, Cortes Hidalgo AP, Tuominen S, Malmberg A, Mulder RH, Brunst KJ, Alemany S, McBride NS, Yousefi P, Heiss JA, McRae N, Page CM, Jin J, Pesce G, Caramaschi D, Rifas-Shiman SL, Koen N, Adams CD, Magnus MC, Baïz N, Ratanatharathorn A, Czamara D, Håberg SE, Colicino E, Baccarelli AA, Cardenas A, DeMeo DL, Lawlor DA, Relton CL, Felix JF*, van IJzendoorn MH, Bakermans-Kranenburg MJ, Kajantie E, Räikkönen K, Sunyer J, Sharp GC*, Houtepen LC, Nohr EA, Sørensen TIA, Téllez-Rojo MM, Wright RO, Annesi-Maesano I, Wright J, Hivert MF, Wright RJ, Zar HJ, Stein DJ, London SJ, Cecil CAM, Tiemeier H, Lahti JMaternal anxiety during pregnancy and newborn epigenome-wide DNA methylation2021, Jan 710.1038/s41380-020-00976-0
Ronkainen J, Heiskala A, Vehmeijer FOL, Lowry E, Caramaschi D, Estrada Gutierrez G, Heiss JA, Hummel N, Keikkala E, Kvist T, Kupsco A, Melton PE, Pesce G, Soomro MH, Vives-Usano M, Baiz N, Binder E, Czamara D, Guxens M, Mustaniemi S, London SJ, Rauschert S, Vääräsmäki M, Vrijheid M, Ziegler AG, Annesi-Maesano I, Bustamante M*, Huang RC, Hummel S, Just AC, Kajantie E, Lahti J, Lawlor D, Räikkönen K, Järvelin MR, Felix JF*, Sebert SMaternal haemoglobin levels in pregnancy and child DNA methylation: a study in the pregnancy and childhood epigenetics consortium2021, Jan 11, 1-1310.1080/15592294.2020.1864171
Dall' Aglio L, Rijlaarsdam J, Mulder RH, Neumann A, Felix JF*, Kok R, Bakermans-Kranenburg MJ, van Ijzendoorn MH, Tiemeier H, Cecil CAMEpigenome-wide associations between observed maternal sensitivity and offspring DNA methylation: a population-based prospective study in children2020 Dec 3, 1-1110.1017/S0033291720004353
Vehmeijer FOL, Küpers LK, Sharp GC*, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B*, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M*, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF*DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies2020, 12(1), 10510.1186/s13073-020-00810-w
Geurtsen ML*, Santos S, Gaillard R, Felix JF*, Jaddoe VWVAssociations Between Intake of Sugar-Containing Beverages in Infancy With Liver Fat Accumulation at School Age2020, Nov 210.1002/hep.31611
Geurtsen ML*, Jaddoe VWV, Gaillard R, Felix JF*Associations of maternal early-pregnancy blood glucose and insulin concentrations with DNA methylation in newborns2020, 12(1):13410.1186/s13148-020-00924-3
Koopman-Verhoeff ME, Mulder RH, Saletin JM, Reiss I, van der Horst GTJ, Felix JF*, Carskadon MA, Tiemeier H, Cecil CAMGenome-wide DNA methylation patterns associated with sleep and mental health in children: a population-based study2020, 61(10),1061-106910.1111/jcpp.13252
Yeung EH, Guan W, Zeng X, Salas LA, Mumford SL, de Prado Bert P, van Meel ER, Malmberg A, Sunyer J, Duijts L, Felix JF*, Czamara D, Hämäläinen E, Binder EB, Räikkönen K, Lahti J, London SJ, Silver RM, Schisterman EFCord blood DNA methylation reflects cord blood C-reactive protein levels but not maternal levels: a longitudinal study and meta-analysis2020, 12(1), 6010.1186/s13148-020-00852-2
Monasso GS, Jaddoe VWV, de Jongste JC, Duijts L, Felix JF*Timing- and Dose-Specific Associations of Prenatal Smoke Exposure With Newborn DNA Methylation2020, 22(10), 1917-192210.1093/ntr/ntaa069
Voerman E, Jaddoe VWV, Uhl O, Shokry E*, Horak J, Felix JF*, Koletzko B*, Gaillard RA population-based resource for intergenerational metabolomics analyses in pregnant women and their children: the Generation R Study2020, 16(4), 4310.1007/s11306-020-01667-1
Merid SK, Novoloaca A, Sharp GC*, Küpers LK, Kho AT, Roy R, Gao L, Annesi-Maesano I, Jain P, Plusquin M, Kogevinas M, Allard C, Vehmeijer FO, Kazmi N, Salas LA, Rezwan FI, Zhang H, Sebert S, Czamara D, Rifas-Shiman SL, Melton PE, Lawlor DA, Pershagen G, Breton CV, Huen K, Baiz N, Gagliardi L, Nawrot TS, Corpeleijn E, Perron P, Duijts L, Nohr EA, Bustamante M*, Ewart SL, Karmaus W, Zhao S, Page CM, Herceg Z, Jarvelin MR, Lahti J, Baccarelli AA, Anderson D, Kachroo P, Relton CL, Bergström A, Eskenazi B, Soomro MH, Vineis P, Snieder H, Bouchard L, Jaddoe VW, Sørensen TIA, Vrijheid M, Arshad SH, Holloway JW, Håberg SE, Magnus P, Dwyer T, Binder EB, DeMeo DL, Vonk JM, Newnham J, Tantisira KG, Kull I, Wiemels JL, Heude B, Sunyer J, Nystad W, Munthe-Kaas MC, Räikkönen K, Oken E, Huang RC, Weiss ST, Antó JM, Bousquet J, Kumar A, Söderhäll C, Almqvist C, Cardenas A, Gruzieva O, Xu CJ, Reese SE, Kere J, Brodin P, Solomon O, Wielscher M, Holland N, Ghantous A, Hivert MF, Felix JF*, Koppelman GH, London SJ, Melén EEpigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age2020, 12(1), 2510.1186/s13073-020-0716-9
Sharp GC*, Alfano R, Ghantous A, Urquiza J, Rifas-Shiman SL, Page CM, Jin J, Fernández-Barrés S*, Santorelli G, Tindula G, Yousefi P, Küpers L*, Ruiz-Arenas C, Jaddoe VWV, DeMeo D, Fossati S, Wright J, Huen K, Popovic M, Nohr EA, Davey Smith G, Lepeule J, Baccarelli A, Magnus MC, Nystad W, Casas M, Oken E, Håberg SE, Vafeiadi M, Roumeliotaki T, Vrijheid M, Munthe-Kaas MC, Eskenazi B, Ronfani L, Holland N, Chatzi L, Meltzer HM, Herceg Z, Plusquin M, Bustamante M*, Hivert MF, Lawlor DA, Sørensen TIA, London SJ, Felix JF*, Relton CLPaternal body mass index and offspring DNA methylation: findings from the PACE consortium202110.1093/ije/dyaa267
Schellhas L, Haan E, Easey K, Wootton R, Sallis H, Sharp G*, Munafo M, Zuccolo LMaternal and child genetic liability for smoking and caffeine consumption and child mental health: An intergenerational polygenic risk score analysis in the ALSPAC cohort2020https://www.medrxiv.org/content/10.1101/2020.09.07.20189837v1
Gatev E, Gladish N, Mostafavi S, Kobor MS* CoMeBack: DNA Methylation Array Data Analysis for Co-Methylated Regions2020; 36, 2675-268310.1093/bioinformatics/btaa049

4.2 Presentation of the project

Target groupAuthorsMeans of communicationHyperlinkPdf
Scientific communityGemma Sharp. Poster entitled “Exploring Prenatal Influences on Childhood Health: What Role for Mums and Dads”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
Scientific communityGemma Sharp. Poster entitled “Using epigenetic and genetic approaches to identify factors that influence paternal participation in birth cohort studies”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
Scientific communityGemma Sharp. Poster entitled “It’s the Mother!: Recognising and addressing the imbalance in DOHaD research towards the study of maternal pregnancy exposures”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
General publicMichael Kobor. Several articles were published in the general media in October 2019 about our paper “The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells”. e.g.: 1. “New DNA 'clock' could help measure development in young children” - Science Daily, 2. “A DNA "Clock" To Measure Development in Young Children” - Technology Networks, 3. “First "molecular clock" for kids could reveal early signs of autism” - New Atlas, 4. “Researchers Identify DNA Methylation Signature Linked to Aging, Autism in Children” - Genome WebNewspaper articles
General publicMichael Kobor. Policy Horizons Canada, “Social Epigenetics: How Your Early Life Environment Gets “Under Your Skin”, November 14, 2019. National blog post
General PublicMichael Kobor (UBC). Article in The Conversation “New DNA test that reveals a child’s true age has promise, but ethical pitfalls”, February 23, 2020 (co-authored with Drs. Charles Dupras and Martine Lappé) International blog postLink
General PublicMichael Kobor(UBC). Profiled Researcher in Axios “The Kids Aren’t All Right”, May 9, 2020 International blog postLink
General PublicMichael Kobor (UBC). Article in The Province “The hidden costs of COVID-19 for children”, May 31, 2020 (co-authored with Dr. Candice Odgers and Dr. Kim Schmidt) Newspaper articleLink
General PublicMichael Kobor (UBC). Article in The Vancouver Sun “Don’t forget about kids: An open letter for children and youth during pandemic recovery” June 20, 2020 (co-authored with Dr. Vanessa Brcic, Dr. Adrienne Montani, Dr. Christine Loock and Dr. Kim Schmidt) Newspaper articleLink
General PublicMichael Kobor (UBC). Article in The Conversation “The long-term biological effects of COVID-19 stress on kids’ future health and development”, July 12, 2020 (co-authored with Dr. Candice Odgers, Dr. Kim Schmidt and Dr. Ruanne Vent-Schmidt) International blog postLink
General PublicMichael Kobor (UBC). Article in The Vancouver Sun “We must act now to counter long-term biological effects of COVID-19 stress on kids’ health and development”, August 11, 2020 (co-authored with Dr. Candice Odgers, Dr. Kim Schmidt and Dr. Ruanne Vent-Schmidt) Newpaper articleLink
Scientific CommunityMichael Kobor (UBC). Profiled Researcher on CIFAR Virtual Talk “The hidden costs of COVID-19 on children”, September 22, 2020 Invited talkLink

4.3 List of submitted patents and other outputs

Patent licencePartners involvedYearInternational eu or national patentCommentPdf

WU Logo
This project has received funding from the European Union’s
H2020 Research and Innovation Programme under grant agreement n.696300

We use cookies to improve our website and your experience when using it. By continuing to navigate this site, you agree to the cookie policy. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive Module Information