Early-life Nutritional Programming of Metabolic Health through Epigenetic Pathways

ERA-HDHL JFA2 “Nutrition & the Epigenome” (Epigenome)
Early-life Nutritional Programming of Metabolic Health through Epigenetic Pathways
NutriPROGRAM
2019-03-01
2022-12-31
Janine Felix
Erasmus MC, University Medical Center Rotterdam
The Netherlands

Consortium

Partner Organization Partner Country
University of BristolUnited Kingdom
Wageningen UniversityThe Netherlands
University of British ColumbiaCanada
Ludwig-Maximilians-Universität MünchenGermany
Barcelona Institute for Global Health (ISGlobal)Spain

1. Overall project description


1.1 Summary

Pregnancy and infancy are critical periods for nutritional programming of metabolic health. Epigenetic changes such as DNA methylation seem to have a crucial role linking early-life nutrition to metabolic health across the life course. The aim of NutriPROGRAM was to identify early-life nutrition-related factors and related epigenetic pathways leading to metabolic adaptations and disease across the life course. 


During the project, we have evaluated the newly developed Dutch toddler diet quality index. We have identified associations of nutrition-related factors and in early life with DNA methylation at a large number of sites across the genome. These include maternal dietary glycemic index and load, Mediterranean diet adherence, vitamin B12 and fatty acid levels, as well as breastfeeding, infant protein intake and child eating behaviour. Also, we found associations, although in some cases a limited number, of DNA methylation with child health outcomes, such as body and fat mass index and lipid levels. Some of these were shown to differ depending on other factors, such as maternal obesity or smoking.


We have described DNA methylation trajectories from birth into adolescence and have created a publicly available website through which these can be visualized. In addition, a publicly available catalogue of blood autosomal cis-eQTMs in children was created. Both of these resources will help in designing and interpreting future DNA methylation studies.  


Ongoing work focuses on the use of DNA methylation to predict child health outcomes, as well as on discovery of tissue-specific mQTLs in buccal and placental tissue, which will contribute to the understanding of biological pathways and to inform studies into causality. 


As such, NutriPROGRAM has achieved its expected impacts, which were: 


1) Create a set of harmonised and integrated nutrition-related factors that can be used by scientists studying the relationships between nutrition and health; 


2) Lead to a better understanding of the role of DNA methylation in the pathways underlying the relation of early-life nutrition and metabolic health; 


3) Lead to a better understanding of causality and modification of DNA methylation in these pathways; 


4) Contribute to the development of methods to help identify the most promising findings from DNA methylation studies for further research; 


5) Form a sustainable, international network of researchers on early-life nutrition, epigenetics and long-term metabolic outcomes that will lay the foundation for further research in this area for many years to come.


1.2 Highlights

Trajectories of DNA methylation from birth to adolescence 


DNA methylation is known to play an important role in child health and development, but not much is known about how DNA methylation changes with age in this important period of life. Using information from over 2300 children, we have characterized trajectories of DNA methylation from birth into adolescence. We found that DNA methylation changes with age at over half of the examined CpG sites and that there are differences between individuals in terms of patterns of change. These findings support a developmental role for DNA methylation and will be important for future studies in this area. We have created a publicly available website where the DNA methylation trajectories can be visualized: http://epidelta.mrcieu.ac.uk.


 


DNA methylation in relation to gene expression 


For the biological interpretation of studies on DNA methylation, it is important to understand the associations of DNA methylation and gene expression. In over 800 children, we characterized these associations. We identified 39,749 blood autosomal cis eQTMs,expression quantitative trait methylation, defined as correlations between gene expression and DNA methylation levels, representing 21,966 unique CpGs and 8,886 unique genes (transcript clusters). The overlap of child blood cis-eQTMs with those previously described in adults was small. Only half of the cis-eQTMs could be captured through annotation to the closest gene. This catalogue of blood autosomal cis-eQTMs in children can help the biological interpretation of EWAS findings. It is publicly available at: https://helixomics.isglobal.org/. 


 


DNA methylation and body mass index from birth to adolescence 


DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using data from up to 4133 children from 23 studies. Overall, there were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adults BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity, but this needs further study.


 


Paternal body mass index and child DNA methylation 


Previous small, mostly candidate gene studies have shown associations between paternal pre-pregnancy body mass index (BMI) and offspring-blood DNA methylation. In NutriPROGRAM and the Pregnancy and Childhood Epigenetics (PACE) consortium, we co-ordinated epigenome-wide association studies of paternal BMI in relation to DNA methylation and then meta-analysed the results across 13 data sets at birth (4894 babies) and six data sets in childhood (1982 babies). We found little evidence to support previous findings, even at imprinted regions. However, this does not rule out the possibility of a paternal epigenetic effect in different tissues, at regions not covered by the 450k array, via different mechanisms or in populations with greater extremes of paternal BMI. More research is warranted to help in understanding the size and nature of contributions of paternal adiposity to offspring epigenetics and health outcomes.


 


Maternal dietary glycemic index and load during pregnancy and child DNA methylation


Suboptimal nutrition in pregnancy is associated with worse offspring cardiometabolic health. DNA methylation may be an underlying mechanism. We meta-analyzed epigenome-wide association studies (EWAS) of maternal dietary glycemic index and load with cord blood DNA methylation in a total of 2003 mother-child pairs from three studies. We found that maternal glycemic index and load were associated with cord blood DNA methylation at 41 sites, mostly in mothers with overweight/obesity. We did not observe overlap with CpGs associated with maternal glycemic traits, BMI, or child birth weight or BMI. DNA methylation at a limited number of sites was associated with gene expression in blood or adipose tissue. This indicates potential functional effects, which need to be further examined. 


 


Maternal adherence to the Mediterranean diet in pregnancy and child DNA methylation


Higher adherence to the Mediterranean diet during pregnancy is related to a lower risk of preterm birth and to better offspring cardiometabolic health. DNA methylation may be an underlying biological mechanism. We evaluated whether maternal adherence to the Mediterranean diet was associated with offspring cord blood DNA methylation, by analysing epigenome-wide association studies of maternal adherence to the Mediterranean diet during pregnancy and offspring cord blood DNA methylation in 2802 mother-child pairs from five cohorts. We found that adherence to a Mediterranean diet was associated with cord blood DNA methylation at one site. The functional relevance and potential link with childhood health outcomes should be taken forward to future studies.


 


Maternal vitamin B12 concentrations in pregnancy and child DNA methylation


Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Fetal DNA methylation changes could underlie these associations. We analysed if circulating vitamin B12 concentrations in mothers during pregnancy (2420 mother-child pairs) or in cord blood (1029 infants) are associated with DNA methylation in cord blood. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively. Some of these have been previously associated with health outcomes, such as birth weight, gestational age, childhood cognitive skills or nonverbal IQ. Around one-fifth were associated with nearby gene expression. This study provides important information about DNA methylation loci potentially underlying associations of vitamin B12 concentrations with child health outcomes.


 


Animal protein intake during infancy and childhood DNA methylation


In a joint analysis of 2 longitudinal studies in the NutriPROGRAM consortium coordinated in Germany and the Netherlands, animal protein intake in infancy was examined in relation to DNA methylation in early and in late childhood. Results showed that infant animal protein intake was not associated with DNA methylation in early childhood, but was associated with DNA methylation in late childhood.


4. Impact


4.1 List of publications

AuthorsTitleYear, Issue, PPPartners NumberDoiPdf
Sharp GC*, Schellhas L, Richardson SS, Lawlor DATime to cut the cord: recognizing and addressing the imbalance of DOHaD research towards the study of maternal pregnancy exposures10.1017/S2040174419000072
Neumann A, Walton E, Alemany S, Cecil C, González JR, Demissie Jima D, Lahti J, Tuominen ST, Barker ED, Binder E, Caramaschi D, Carracedo A, Czamara D, Evandt J, Felix JF*, Fuemmeler BF, Gutzkow KB, Hoyo C, Julvez J, Kajantie E, Laivuori H, Maguire R, Maitre L, Murphy SK, Murcia M, Villa PM, Sharp GC*, Sunyer J, Raikkönen K, Bakermans-Kranenburg M, Van IJzendoorn M, Guxens M, Relton CL, Tiemeier HAssociation between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis10.1038/s41398-020-01058-z
Küpers LK*, Monnereau C, Sharp GC*, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M*, Perron P, Wright RO, Hertz-Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergström A, Örtqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Håberg SE, Sørensen TIA, Taylor JA, Räikkönen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hämäläinen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melén E, Prentice AM, Kajantie E, Almqvist C, Oken E, Dabelea D, Boezen HM, Melton PE, Wright RJ, Koppelman GH, Trevisi L, Hivert MF, Sunyer J, Munthe-Kaas MC, Murphy SK, Corpeleijn E, Wiemels J, Holland N, Herceg Z, Binder EB, Davey Smith G, Jaddoe VWV, Lie RT, Nystad W, London SJ, Lawlor DA, Relton CL, Snieder H, Felix JF*Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight10.1038/s41467-019-09671-3
Gervin K, Salas LA, Bakulski KM, van Zelm MC, Koestler DC, Wiencke JK, Duijts L, Moll HA, Kelsey KT, Kobor MS*, Lyle R, Christensen BC, Felix JF*, Jones MJSystematic Evaluation and Validation of Reference and Library Selection Methods for Deconvolution of Cord Blood DNA Methylation Data10.1186/s13148-019-0717-y
Marchioro L, Geraghty AA, Uhl O, Shokry E, O’Brien EC, Koletzko B*, McAuliffe FMEffect of a low glycaemic index diet during pregnancy on maternal and cord blood metabolomic profiles: results from the ROLO randomized controlled trial10.1186/s12986-019-0378-z
Geurtsen ML, Jaddoe VWV, Salas LA, Santos S, Felix JF*Newborn and childhood differential DNA methylation and liver fat in school-age children10.1186/s13148-019-0799-6
Caramaschi D, Hatcher C, Mulder RH, Felix JF*, Cecil CAM, Relton CL, Walton EEpigenome-wide association study of seizures in childhood and adolescence10.1186/s13148-019-0793-z
Sikdar S, Joehanes R, Joubert BR, Xu CJ, Vives-Usano M, Rezwan FI, Felix JF*, Ward JM, Guan W, Richmond RC, Brody JA, Küpers LK*, Baïz N, Håberg SE, Smith JA, Reese SE, Aslibekyan S, Hoyo C, Dhingra R, Markunas CA, Xu T, Reynolds LM, Just AC, Mandaviya PR, Ghantous A, Bennett BD, Wang T, The BIOS Consortium, Bakulski KM, Melen E, Zhao S, Jin J, Herceg Z, Meurs JV, Taylor JA, Baccarelli AA, Murphy SK, Liu Y, Munthe-Kaas MC, Deary IJ, Nystad W, Waldenberger M, Annesi-Maesano I, Conneely K, Jaddoe VW, Arnett D, Snieder H, Kardia SL, Relton CL, Ong KK, Ewart S, Moreno-Macias H, Romieu I, Sotoodehnia N, Fornage M, Motsinger-Reif A, Koppelman GH, Bustamante M,* Levy D, London SJComparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking10.2217/epi-2019-0066
Rudloff S, Bührer C, Jochum F, Kauth T, Kersting M, Körner A, Koletzko B*, Mihatsch W, Prell C, Reinehr T, Zimmer KPVegetarian diets in childhood and adolescence: Position paper of the nutrition committee, German Society for Paediatric and Adolescent Medicine (DGKJ)10.1186/s40348-019-0091-z
Reinehr T, Schnabel D, Wabitsch M, Bechtold-Dalla Pozza S, Bührer C, Heidtmann B, Jochum F, Kauth T, Körner A, Mihatsch W, Prell C, Rudloff S, Tittel B, Woelfle J, Zimmer KP, Koletzko B*Vitamin D supplementation after the second year of life: joint position of the Committee on Nutrition, German Society for Pediatric and Adolescent Medicine (DGKJ e.V.), and the German Society for Pediatric Endocrinology and Diabetology (DGKED e.V.)10.1186/s40348-019-0090-0
Koletzko B*, Bührer C, Ensenauer R, Jochum F, Kalhoff H, Lawrenz B, Körner A, Mihatsch W, Rudloff S, Zimmer KPComplementary foods in baby food pouches: position statement from the Nutrition Commission of the German Society for Pediatrics and Adolescent Medicine (DGKJ, e.V.)10.1186/s40348-019-0089-6
Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, Mari S, Quintela I, Mason D, Cadiou S, Casas M, Andrusaityte S, Bjerve Gutzkow K, Vafeiadi Ma, Wright J, Lepeule J, Grazuleviciene R, Chatzi L, Carracedo A, Estivill X, Marti E, Escaramis G, Vrijheid M, Gonzalez JR, Bustamante M*Identification of blood autosomal cis-expression quantitative trait methylation (cis-eQTMs) in children10.1101/2020.11.05.368076
Mulder RH, Neumann A, Cecil CAM, Walton E, Houtepen LC, Simpkin AJ, Rijlaarsdam J, Heijmans BT, Gaunt TR, Felix JF*, Jaddoe VWV, Bakermans-Kranenburg MJ, Tiemeier H, Relton CL, van IJzendoorn MH, Suderman MEpigenome-wide change and variation in DNA methylation in childhood: Trajectories from birth to late adolescence10.1093/hmg/ddaa280
van Dongen J, Hagenbeek FA, Suderman M, Roetman PJ, Sugden K, Chiocchetti AG, Ismail K, Mulder RH, Hafferty JD, Adams MJ, Walker RM, Morris SW, Lahti J, Küpers LK, Escaramis G, Alemany S, Jan Bonder M, Meijer M, Ip HF, Jansen R, Baselmans BML, Parmar P, Lowry E, Streit F, Sirignano L, Send TS, Frank J, Jylhävä J, Wang Y, Mishra PP, Colins OF, Corcoran DL, Poulton R, Mill J, Hannon E, Arseneault L, Korhonen T, Vuoksimaa E, Felix JF*, Bakermans-Kranenburg MJ, Campbell A, Czamara D, Binder E, Corpeleijn E, Gonzalez JR, Grazuleviciene R, Gutzkow KB, Evandt J, Vafeiadi M, Klein M, van der Meer D, Ligthart L; BIOS Consortium, Kluft C, Davies GE, Hakulinen C, Keltikangas-Järvinen L, Franke B, Freitag CM, Konrad K, Hervas A, Fernández-Rivas A, Vetro A, Raitakari O, Lehtimäki T, Vermeiren R, Strandberg T, Räikkönen K, Snieder H, Witt SH, Deuschle M, Pedersen NL, Hägg S, Sunyer J, Franke L, Kaprio J, Ollikainen M, Moffitt TE, Tiemeier H, van IJzendoorn MH, Relton C, Vrijheid M, Sebert S, Jarvelin MR, Caspi A, Evans KL, McIntosh AM, Bartels M, Boomsma DIDNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan10.1038/s41380-020-00987-x
Sammallahti S, Cortes Hidalgo AP, Tuominen S, Malmberg A, Mulder RH, Brunst KJ, Alemany S, McBride NS, Yousefi P, Heiss JA, McRae N, Page CM, Jin J, Pesce G, Caramaschi D, Rifas-Shiman SL, Koen N, Adams CD, Magnus MC, Baïz N, Ratanatharathorn A, Czamara D, Håberg SE, Colicino E, Baccarelli AA, Cardenas A, DeMeo DL, Lawlor DA, Relton CL, Felix JF*, van IJzendoorn MH, Bakermans-Kranenburg MJ, Kajantie E, Räikkönen K, Sunyer J, Sharp GC*, Houtepen LC, Nohr EA, Sørensen TIA, Téllez-Rojo MM, Wright RO, Annesi-Maesano I, Wright J, Hivert MF, Wright RJ, Zar HJ, Stein DJ, London SJ, Cecil CAM, Tiemeier H, Lahti JMaternal anxiety during pregnancy and newborn epigenome-wide DNA methylation10.1038/s41380-020-00976-0
Ronkainen J, Heiskala A, Vehmeijer FOL, Lowry E, Caramaschi D, Estrada Gutierrez G, Heiss JA, Hummel N, Keikkala E, Kvist T, Kupsco A, Melton PE, Pesce G, Soomro MH, Vives-Usano M, Baiz N, Binder E, Czamara D, Guxens M, Mustaniemi S, London SJ, Rauschert S, Vääräsmäki M, Vrijheid M, Ziegler AG, Annesi-Maesano I, Bustamante M*, Huang RC, Hummel S, Just AC, Kajantie E, Lahti J, Lawlor D, Räikkönen K, Järvelin MR, Felix JF*, Sebert SMaternal haemoglobin levels in pregnancy and child DNA methylation: a study in the pregnancy and childhood epigenetics consortium10.1080/15592294.2020.1864171
Dall' Aglio L, Rijlaarsdam J, Mulder RH, Neumann A, Felix JF*, Kok R, Bakermans-Kranenburg MJ, van Ijzendoorn MH, Tiemeier H, Cecil CAMEpigenome-wide associations between observed maternal sensitivity and offspring DNA methylation: a population-based prospective study in children10.1017/S0033291720004353
Vehmeijer FOL, Küpers LK, Sharp GC*, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B*, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M*, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF*DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies10.1186/s13073-020-00810-w
Geurtsen ML*, Santos S, Gaillard R, Felix JF*, Jaddoe VWVAssociations Between Intake of Sugar-Containing Beverages in Infancy With Liver Fat Accumulation at School Age10.1002/hep.31611
Geurtsen ML*, Jaddoe VWV, Gaillard R, Felix JF*Associations of maternal early-pregnancy blood glucose and insulin concentrations with DNA methylation in newborns10.1186/s13148-020-00924-3
Koopman-Verhoeff ME, Mulder RH, Saletin JM, Reiss I, van der Horst GTJ, Felix JF*, Carskadon MA, Tiemeier H, Cecil CAMGenome-wide DNA methylation patterns associated with sleep and mental health in children: a population-based study10.1111/jcpp.13252
Yeung EH, Guan W, Zeng X, Salas LA, Mumford SL, de Prado Bert P, van Meel ER, Malmberg A, Sunyer J, Duijts L, Felix JF*, Czamara D, Hämäläinen E, Binder EB, Räikkönen K, Lahti J, London SJ, Silver RM, Schisterman EFCord blood DNA methylation reflects cord blood C-reactive protein levels but not maternal levels: a longitudinal study and meta-analysis10.1186/s13148-020-00852-2
Monasso GS, Jaddoe VWV, de Jongste JC, Duijts L, Felix JF*Timing- and Dose-Specific Associations of Prenatal Smoke Exposure With Newborn DNA Methylation10.1093/ntr/ntaa069
Voerman E, Jaddoe VWV, Uhl O, Shokry E*, Horak J, Felix JF*, Koletzko B*, Gaillard RA population-based resource for intergenerational metabolomics analyses in pregnant women and their children: the Generation R Study10.1007/s11306-020-01667-1
Merid SK, Novoloaca A, Sharp GC*, Küpers LK, Kho AT, Roy R, Gao L, Annesi-Maesano I, Jain P, Plusquin M, Kogevinas M, Allard C, Vehmeijer FO, Kazmi N, Salas LA, Rezwan FI, Zhang H, Sebert S, Czamara D, Rifas-Shiman SL, Melton PE, Lawlor DA, Pershagen G, Breton CV, Huen K, Baiz N, Gagliardi L, Nawrot TS, Corpeleijn E, Perron P, Duijts L, Nohr EA, Bustamante M*, Ewart SL, Karmaus W, Zhao S, Page CM, Herceg Z, Jarvelin MR, Lahti J, Baccarelli AA, Anderson D, Kachroo P, Relton CL, Bergström A, Eskenazi B, Soomro MH, Vineis P, Snieder H, Bouchard L, Jaddoe VW, Sørensen TIA, Vrijheid M, Arshad SH, Holloway JW, Håberg SE, Magnus P, Dwyer T, Binder EB, DeMeo DL, Vonk JM, Newnham J, Tantisira KG, Kull I, Wiemels JL, Heude B, Sunyer J, Nystad W, Munthe-Kaas MC, Räikkönen K, Oken E, Huang RC, Weiss ST, Antó JM, Bousquet J, Kumar A, Söderhäll C, Almqvist C, Cardenas A, Gruzieva O, Xu CJ, Reese SE, Kere J, Brodin P, Solomon O, Wielscher M, Holland N, Ghantous A, Hivert MF, Felix JF*, Koppelman GH, London SJ, Melén EEpigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age10.1186/s13073-020-0716-9
Sharp GC*, Alfano R, Ghantous A, Urquiza J, Rifas-Shiman SL, Page CM, Jin J, Fernández-Barrés S*, Santorelli G, Tindula G, Yousefi P, Küpers L*, Ruiz-Arenas C, Jaddoe VWV, DeMeo D, Fossati S, Wright J, Huen K, Popovic M, Nohr EA, Davey Smith G, Lepeule J, Baccarelli A, Magnus MC, Nystad W, Casas M, Oken E, Håberg SE, Vafeiadi M, Roumeliotaki T, Vrijheid M, Munthe-Kaas MC, Eskenazi B, Ronfani L, Holland N, Chatzi L, Meltzer HM, Herceg Z, Plusquin M, Bustamante M*, Hivert MF, Lawlor DA, Sørensen TIA, London SJ, Felix JF*, Relton CLPaternal body mass index and offspring DNA methylation: findings from the PACE consortium10.1093/ije/dyaa267
Schellhas L, Haan E, Easey K, Wootton R, Sallis H, Sharp G*, Munafo M, Zuccolo LMaternal and child genetic liability for smoking and caffeine consumption and child mental health: An intergenerational polygenic risk score analysis in the ALSPAC cohorthttps://www.medrxiv.org/content/10.1101/2020.09.07.20189837v1
Gatev E, Gladish N, Mostafavi S, Kobor MS* CoMeBack: DNA Methylation Array Data Analysis for Co-Methylated Regions10.1093/bioinformatics/btaa049
Prince C, Sharp GC*, Howe LD, Fraser A, Richmond RCThe relationships between women's reproductive factors: a Mendelian randomisation analysis10.1186/s12916-022-02293-5
Tran C, Crawford AA, Hamilton A, French CE, Wren Y, Sandy J, Sharp GC*Maternal Stressful Life Events During the Periconceptional Period and Orofacial Clefts: A Systematic Review and Meta-Analysis10.1177/10556656211045553
Juvinao-Quintero DL, Marioni RE, Ochoa-Rosales C, Russ TC, Deary IJ, van Meurs JBJ, Voortman T, Hivert MF, Sharp GC*, Relton CL, Elliott HRDNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts10.1186/s13148-021-01027-3
Juvinao-Quintero DL, Hivert MF, Sharp GC*, Relton CL, Elliott HRDNA Methylation and Type 2 Diabetes: the Use of Mendelian Randomization to Assess Causality10.1007/s40142-019-00176-5
Elliott HR, Sharp GC*, Relton CL, Lawlor DAEpigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction10.1007/s00125-019-05011-8
Sharp GC*, Lawlor DAPaternal impact on the life course development of obesity and type 2 diabetes in the offspring10.1007/s00125-019-4919-9
Louise J, Deussen AR, Koletzko B*, Owens J, Saffery R, Dodd JMEffect of an antenatal diet and lifestyle intervention and maternal BMI on cord blood DNA methylation in infants of overweight and obese women: the LIMIT Randomised Controlled Trial10.1371/journal.pone.0269723

4.2 Presentation of the project

Target groupAuthorsMeans of communicationHyperlinkPdf
Scientific communityGemma Sharp. Poster entitled “Exploring Prenatal Influences on Childhood Health: What Role for Mums and Dads”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
Scientific communityGemma Sharp. Poster entitled “Using epigenetic and genetic approaches to identify factors that influence paternal participation in birth cohort studies”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
Scientific communityGemma Sharp. Poster entitled “It’s the Mother!: Recognising and addressing the imbalance in DOHaD research towards the study of maternal pregnancy exposures”. Developmental origins of health and disease (DOHaD) conference, Melbourne, Australia, October 21st 2019Poster
General publicMichael Kobor. Several articles were published in the general media in October 2019 about our paper “The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells”. e.g.: 1. “New DNA 'clock' could help measure development in young children” - Science Daily, 2. “A DNA "Clock" To Measure Development in Young Children” - Technology Networks, 3. “First "molecular clock" for kids could reveal early signs of autism” - New Atlas, 4. “Researchers Identify DNA Methylation Signature Linked to Aging, Autism in Children” - Genome WebNewspaper articles
General publicMichael Kobor. Policy Horizons Canada, “Social Epigenetics: How Your Early Life Environment Gets “Under Your Skin”, November 14, 2019. National blog post
General PublicMichael Kobor (UBC). Article in The Conversation “New DNA test that reveals a child’s true age has promise, but ethical pitfalls”, February 23, 2020 (co-authored with Drs. Charles Dupras and Martine Lappé) International blog post
General PublicMichael Kobor(UBC). Profiled Researcher in Axios “The Kids Aren’t All Right”, May 9, 2020 International blog post
General PublicMichael Kobor (UBC). Article in The Province “The hidden costs of COVID-19 for children”, May 31, 2020 (co-authored with Dr. Candice Odgers and Dr. Kim Schmidt) Newspaper article
General PublicMichael Kobor (UBC). Article in The Vancouver Sun “Don’t forget about kids: An open letter for children and youth during pandemic recovery” June 20, 2020 (co-authored with Dr. Vanessa Brcic, Dr. Adrienne Montani, Dr. Christine Loock and Dr. Kim Schmidt) Newspaper article
General PublicMichael Kobor (UBC). Article in The Conversation “The long-term biological effects of COVID-19 stress on kids’ future health and development”, July 12, 2020 (co-authored with Dr. Candice Odgers, Dr. Kim Schmidt and Dr. Ruanne Vent-Schmidt) International blog post
General PublicMichael Kobor (UBC). Article in The Vancouver Sun “We must act now to counter long-term biological effects of COVID-19 stress on kids’ health and development”, August 11, 2020 (co-authored with Dr. Candice Odgers, Dr. Kim Schmidt and Dr. Ruanne Vent-Schmidt) Newpaper article
Scientific CommunityMichael Kobor (UBC). Profiled Researcher on CIFAR Virtual Talk “The hidden costs of COVID-19 on children”, September 22, 2020 Invited talk

4.3 List of submitted patents and other outputs

Patent licencePartners involvedYearInternational eu or national patentCommentPdf

BACK
WU Logo
This project has received funding from the European Union’s
H2020 Research and Innovation Programme under grant agreement n.696300

We use cookies to improve our website and your experience when using it. By continuing to navigate this site, you agree to the cookie policy. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive Module Information